Chaire Jean-Morlet
Follow us on twitter

CIRM - Jean-Morlet Chair

Dipendra PRASAD - Volker HEIERMANN

Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms

Aspects relatifs en théorie de la représentation, fonctorialité de Langlands et formes automorph​es

2016-Semester1
  • Home
CONFERENCE
Relative Trace Formula, Periods, L-Functions, Harmonic Analysis, and Langlands Functoriality (1351)
Formule des traces relatives, Périodes, Fonctions L, analyse harmonique et fonctorialité de Langlands

Dates: 23-27 May 2016 at CIRM (Marseille Luminy, France)

SCHEDULE
PARTICIPANTS
ABSTRACTS
VIDEOS

DESCRIPTION

​Automorphic forms and Langlands fonctoriality is a very active area of contemporary international mathematical research at the cross-roads of number theory, representation theory, arithmetic, and algebraic geometry.

Endoscopy, a technique that allows to study certain instances of functoriality, was initiated by Langlands and Shelstad almost forty 
years ago, and is now at a mature state. 
Endoscopic functorialities are determined by character identities that are dual to transfer of conjugacy classes.
Endoscopy is fundamental as it puts a structure (L-packet and A packet) on "the set" of automorphic representations. 

​The most recent highlight of the theory is the classification of the 
automorphic spectrum of orthogonal, symplectic (Arthur) and unitary groups (Mok) in terms of the automorphic spectrum of GL(n). The proof relies on highly-sophisticated tools, such as the stable version of the twisted Arthur-Selberg trace formula. 
lt depends also on deep results on local harmonic analysis such as: - transfer of orbital integrals (Waldspurger) and the famous 
fundamental Iemma (whose most general statement was proved by 
Ngô by powerful geometric methods).

New techniques and methods are needed for further study of 
fonctoriality that complements or goes beyond endoscopy.

The common motivation for the conference "Relative Trace Formula, Periods and L_Functions and Harmonic Analysis" is to study the
 "periods " of automorphic forms. 
The non-vanishing of certain periods should  be characterized by functoriality. Moreover, special values of L-functions should be related to periods (a paradigm is on old result on Waldspurger of the relation between toric periods and 
central values of L-function of automorphic forms; a broad generalization is the so-called global Gross-Prasad conjecture).
Picture
Picture
Picture
SCIENTIFIC COMMITTEE
​Hervé Jacquet (Columbia University)
Jean-Pierre Labesse (Prof. Emeritus, Aix-Marseille)
Colette Moeglin (IMJ-PRG Paris)
ORGANIZING COMMITTEE
Pierre-Henri Chaudouard (Université Paris Diderot)
Volker Heiermann (Aix-Marseille Université)
Dipendra Prasad (TIFR Mumbai & Aix-Marseille Université)
Yiannis Sakellaridis (Rutgers University Newark & National Technical University of Athens)
SPEAKERS
  •  James Arthur (University of Toronto) - VIDEO
    ​Beyond Endoscopy and elliptic terms in the trace formula 
  • Raphaël Beuzart-Plessis (CNRS, National University of Singapore) - VIDEO
    The local Gan-Gross-Prasad conjecture for unitary groups 
  • Masaaki Furusawa (Osaka City University)
    On special Bessel periods and the Gross-Prasad conjecture forSO(2n + 1) × SO(2)
  • Wee Teck Gan (National University of Singapore) - VIDEO
    Theta lifts of tempered representations and Langlands parameters
  • Nadia Gurevic (Ben Gurion University)
    Poles of the standard L-function for G2 and the image of functorial lifts
  • Jeffrey Hakim (American University Washington DC)
    Constructing Tame Supercuspidal Representations
  • Michael Harris (IMJ-PRG Paris)
    Special values of Rankin-Selberg L-functions and automorphic periods
  • Atsushi Ichino (Kyoto University)
    The automorphic discrete spectrum of Mp(2n)
  • Dihua Jiang (University of Minnesota)
    On the Central Value of Tensor Product L-functions and the Langlands Functoriality
  • Wen-Wei Li (Chinese Academy of Science)
    Prehomogeneous zeta integrals with generalized coefficients
  • Nadir Matringe (Université de Poitiers)
    Distinction of the Steinberg representation for GL(n) and its inner forms
  • Fiona Murnaghan (University of Toronto) - VIDEO
    Tame relatively supercuspidal representations
  • Omer Offen (Technion-Israel Institute of Technology)
    On gamma factors, root numbers and distinction
  • Eric Opdam (University of Amsterdam)
    On the spherical automorphic spectrum supported in the Borel subgroup
  • Jean-Loup Waldspurger (CNRS, IMJ-PRG Paris)
    Caractères des représentations de niveau 0
  • Chen Wan (University of Minnesota)
    Multiplicity one theorem for the Ginzburg-Rallis model
  • Hang Xue (Max Planck Institut)
    Approximating smooth transfer in Jacquet-Rallis relative trace formulas
  • Shunsuke Yamana (Kyoto University)
    On the lifting of Hilbert cusp forms to Hilbert-Siegel cusp forms
  • Shou-Wu Zhang (Princeton University) - VIDEO
    Congruent number problem and BSD conjecture
  • Wei Zhang (Columbia University)
    Cycles on the moduli of Shtukas and Taylor coefficients of L-functions
  • Michal Zydor (Weizmann Institute of Science)
    The Jacquet-Rallis trace formula

Picture