**CONFERENCE**

Tiling and Recurrence (1721)

Tiling and Recurrence (1721)

*Pavages et récurrence***Dates: 4-8 December 2017 at CIRM (Marseille Luminy, France)**

DescriptionIn this conference, we are interested in the recent developments around the mathematical theory of tilings and its recurrence properties, which have a lot of connections with other areas like number theory, dynamical system, quasi-crystal, computer science and discrete geometry. We intend to focus particularly on the following areas: Recurrence properties of tiling and number theoryThere has been a series of recent developments on bounded remainder sets involving various methods (dynamical, topological, number theoretical, see [2, 3]). We plan to discuss and compare different approaches involved there. We would like to consider frequencies and recurrence properties in tiling spaces, by focusing on variants of ergodic averages in this framework. Spectral property of tiling dynamical systemsRelated to the first theme, we shall discuss the long standing Pisot substitution conjecture, the main remaining problem in this area. Pure discreteness of tiling is essentially the strongest recurrence property we can have, which is equivalent to almost periodicity of the associated point set (c.f. [6, 1]). On this occasion we wish to merge people working in these areas to produce possible breakthroughs. Aperiodic tile set and quasi-crystalsAn aperiodic hexagonal monotile was found by Taylor-Socolar [5]. More recently the number of aperiodic tile set of Wang tiles reached its theoretical minimum 11 with Jeandel-Rao [4]. Their recurrence properties are quite fascinating and we shall discuss them as models of quasi-crystals. References[1] S. Akiyama and J.-Y. Lee, Algorithm for determining pure pointedness of self-affine tilings, Adv. Math. 226 (2011), no. 4, 2855-2883.[2] A. Haynes, M. Kelly, and B. Weiss, Equivalence relations on separated nets arising from linear toral flows, Proc. Lond. Math. Soc. (3) 109 (2014), no. 5, 1203-1228.[3] A. Haynes, H. Koivusalo, L.Sadun, and J. Walton, Gaps problems and frequencies of patches in cut and project sets, ArXiv:1411.0578.[4] E. Jeandel and M. Rao, An aperiodic set of 11 wang tiles, ArXiv:1506:-6492.[5] J. E. S. Socolar and J. M. Taylor, An aperiodic hexagonal tile, Journal of Combinatorial Theory 18 (2011), 2207-2231.[6] B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 695-738. |
SCIENTIFIC COMMITTEEMichael Baake (Bielefeld University)
Marcy Barge (Montana State University) Valérie Berthé (Université Paris Diderot) Fabien Durand (Université de Picardie Jules Verne) Johannes Kellendonk (Université Lyon 1) Jeong Yup Lee (Catholic Kwandong University) Anne Siegel (IRISA Rennes) Boris Solomyak (University of Bar-Ilan) Jörg M. Thuswaldner (Montanuniversität Leoben) ORGANIZING COMMITTEEShigeki Akiyama (University of Tsukuba & Aix-Marseille Université)
Pierre Arnoux (Aix-Marseille Université) SPEAKERSMichael Baake (Bielefeld University) -
Autocorrelation and diffraction via renormalisation Part II: Extensions and generalisationsArtemi Berlinkov (Bar-Ilan University) - Singular substitutions of constant lengthValérie Berthé (Université Paris Diderot) - Dimension groups and recurrence for tree subshifts (pdf)Adnene Besbes (Université Paris Diderot) - Thermodynamic formalism On Aperiodic Linearly Repetitive Tilings (pdf)Alexander I. Bufetov (Aix-Marseille Université) - Holder estimates for the spectrum of substitution systems and translation flowsDanilo Antonio Caprio (UNESP-IBILCE Brazil) - Dynamics of stochastic Bratteli diagramsJulien Cassaigne (Aix-Marseille Université) - A set of sequences of complexity 2n+1 (pdf)Thierry Coulbois (Aix-Marseille Université) - Tree substitutions and Rauzy fractals (pdf)Karma Dajani (Utrecht University) - Algebraic sums and products of univoque bases - VIDEODavid Damanik (Rice University) - The Fibonacci Trace Map - VIDEOHiromi Ei (Hirosaki University) - T ilings associated to the nearest integer complex continued fractions over imaginary quadratic fields (pdf)Thomas Fernique (Université Paris 13) - Local rules for planar tilingsUwe Grimm (Open University) - Autocorrelation and diffraction via renormalisation - Part I: Concepts and examples in one dimensionPierre Guillon (Aix-Marseille Université) - Deterministic and expansive directions in 2D subshiftsAlan Haynes (University of Houston) - Bounded remainder sets for rotations on p-adic solenoids - VIDEOSteven Hurder (University of Illinois at Chicago) - Wild solenoids and tilings (pdf)Dong Han Kim (Dongguk University) - On the higher-dimensional three-distance theoremHenna Koivusalo (University of Vienna) - Cut and project sets, linear repetition of patterns, and the Littlewood conjecture Sébastien Labbé (LaBRI Bordeaux) - On the dynamics of Jeandel-Rao tilings (pdf)Paul Mercat (Aix-Marseille Université) - Yet another characterization of the Pisot conjecture - VIDEOYasushi Nagai (Montanuniversität Leoben) - A generalization of local derivability and its consequencesWolfgang Steiner (Université Paris Diderot) - Recognizability for sequences of morphisms - VIDEO |