Fermer ce champ de recherche.
Due to Covid-19, this conference could not take place in residence, as originally intended.
Diophantine Problems, Determinism and Randomness
Problèmes diophantiens, déterminisme et aléatoire

Dates: 23-27 NOvember 2021

Effective Methods, Multiplicativity and Randomness, Lattice Point Counting, Pseudorandomness
The scope of the conference covers

  • additive problems including arithmetic dynamics
  • effectiveness in number theory
  • ergodic theory and probabilistic methods
  • (random) diophantine equations
  • Sarnak’s conjecture
  • uniform distribution and normal numbers.

  • Attila Bérczes (University of Debrecen) – VIDEO
    On some diophantine equations in separated variables
  • Vitaly Bergelson (Ohio State University) – VIDEO
    Independence of actions of (N,+) and (N,×) and Sarnak’s Möbius disjointness
  • Régis de la Bretèche (IMJ-PRG Paris) – VIDEO
    Higher moments of primes in intervals and in arithmetic progressions, II
  • Jörg Bruedern (Georg-August-Universität Göttingen)
    Bracketed ternary additive problems
  • Cécile Dartyge (Université de Lorraine) – VIDEO
    The Rudin-Shapiro function in finite fields
  • Sary Drappeau (Aix-Marseille Université) – VIDEO
    Modularity of the q-Pochhammer symbol and application
  • Michael Drmota (TU Wien) – VIDEO
    (Logarithmic) densities for automatic sequences along primes and squares
  • Andrej Dujella (University of Zagreb) – VIDEO
    D(n)-sets with square elements
  • Christian Elsholtz (TU Graz) – VIDEO
    Improved cap constructions, and sets without arithmetic progressions
  • Daniel Fiorilli (Université Paris-Saclay) 
    Higher moments of primes in intervals and in arithmetic progressions, I
  • Christopher Frei (TU Graz) – VIDEO
    ​Constructing abelian extensions with prescribed norms
  • Kalman Györy (University of Debrecen) – VIDEO
    Effective finiteness results for diophantine equations over finitely generated domains
  • Philipp Habegger (University of Basel) – VIDEO
    Equidistribution of roots of unity and the Mahler measure
  • Lajos Hajdu (University of Debrecen) – VIDEO
    Skolem’s conjecture and exponential Diophantine equations
  • Florian Luca (University of the Witwatersrand)​ – VIDEO
    Fibonacci numbers and repdigits
  • Manfred Madritsch (Université de Lorraine) – VIDEO
    ​The sum-of-digits function in linearly recurrent number systems and almost primes
  • Bruno Martin (Université de la Côte d’Opale) – VIDEO
    ​Some interactions between number theory and multifractal analysis
  • Nikolay Moshchevitin (Lomonosov Moscow State Univ.)
    Diophantine exponents, best approximation and badly approximable numbers – VIDEO
  • ​Alina Ostafe (UNSW Sydney) – VIDEO
    Dynamical irreducibility of polynomials modulo primes
  • Fedor Pakovich (Ben Gourion University of the Negev)
    On amenable semigroups of rational functions 
  • Fabien Pazuki (University of Copenhagen) – VIDEO
    Bertini and Northcott
  • István Pink (University of Debrecen) – VIDEO
    Number of solutions to a special type of unit equations in two unknowns
  • János Pintz (Alfréd Rényi Institute Budapest) – VIDEO
    Large values of the remainder term of the prime number theorem 
  • Ilya Shkredov (Steklov Mathematical Institute) – VIDEO
    Zaremba’s conjecture and growth in groups
  • Igor Shparlinski (UNSW Sydney) – VIDEO
    Pseudorandomness at prime times and digits of Mersenne numbers
  • Thomas Stoll (Université de Lorraine) – VIDEO
    On generalised Rudin-Shapiro sequences ​
  • Gérald Tenenbaum (Université de Lorraine)
    Recent progress on the Selberg-Delange method in analytic number theory
  • Jörg Thuswaldner ​(Montanuniversität Leoben) – VIDEO
    Multidimensional continued fractions and symbolic codings of toral translations
  • (PG) Gary Walsh (University of Ottawa) – VIDEO
    On binary quartic Thue equations and related topics
  • Barak Weiss (Tel Aviv University) – VIDEO
    Classification and statistics of cut-and-project sets
  • Benjamin Weiss (Einstein Institute of Mathematics)
    Poisson-generic points – VIDEO
  • Volker Ziegler (Paris-Lodron University Salzburg)
    On S-Diophantine Tuples – VIDEO