Mini-course on Fano Foliations

Carolina Araujo (IMPA)

Lecture 3: Classification of Fano foliations of large index
Mini-course on Fano Foliations

Joint with Stéphane Druel (CNRS/Université Claude Bernard Lyon 1)

- Lecture 0: Algebraicity of smooth formal schemes and applications to foliations
- Lecture 1: Definition, examples and first properties
- Lecture 2: Adjunction formula and applications
- Lecture 3: Classification of Fano foliations of large index
Classification of Fano manifolds

Theorem (Kollár-Miyaoka-Mori 1992)
For fixed n, Fano manifolds of dimension n form a bounded family

Classification in dimension ≤ 3 (Iskovskikh & Mori-Mukai 1977-1981)

Definition
The index of a Fano manifold X is

$$i(F) := \max\{ m \in \mathbb{Z} \mid -K_X = mA, \ A \text{ ample} \}$$

Theorem (Kobayashi-Ochiai 1973)
- $i(X) \leq \dim(X) + 1$
- $i(X) = \dim(X) + 1 \iff X \cong \mathbb{P}^n$
- $i(X) = \dim(X) \iff X \cong Q^n \subset \mathbb{P}^{n+1}$
Classification of Fano manifolds

Theorem (Fujita 1982)
Classification when $i(X) = \dim(X) - 1$ (del Pezzo manifolds)

Theorem (Mukai 1992)
Classification when $i(X) = \dim(X) - 2$ (Mukai manifolds)

Theorem (Birkar 2016)
For singular Fano varieties, boundedness still holds if one suitably bounds the singularities (ϵ-lc)
Fano foliations

Problem

For fixed r and n, do Fano foliations of rank r on projective manifolds of dimension n form a bounded family?

Necessary condition (proved in lectures 0 and 1)

\mathcal{F} Fano foliation $\implies \exists$ subfoliation $\mathcal{G} \subset \mathcal{F}$ with algebraic and RC leaves

$\implies X$ is uniruled

Definition

The index of a Fano foliation \mathcal{F} on complex projective manifold X is

$$i(\mathcal{F}) := \max \{ m \in \mathbb{Z} \mid -K_\mathcal{F} \sim_\mathbb{Z} mA, \ A \text{ ample} \}$$
Kobayashi-Ochiai theorem for foliations

Theorem (A.-Druel - Kovács 2008)

\[\mathcal{F} \subseteq T_X \] Fano foliation of rank \(r \) on a complex projective manifold \(X \)

- \(i(\mathcal{F}) \leq r \)
- \(i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n \)

Theorem (Wahl 1983)

\(X \) complex projective manifold

If \(T_X \) contains an ample line bundle, then \(X \cong \mathbb{P}^n \)

\(\implies \) in the theorem we may assume that \(r \geq 2 \)
KOBEYASHI-OCHIAI THEOREM FOR FOLIATIONS

Theorem (A.- Druel - Kovács 2008)
\[\mathcal{F} \subsetneq \mathcal{T}_X \] Fano foliation of rank \(r \) on a complex projective manifold \(X \)

- \(i(\mathcal{F}) \leq r \)
- \(i(\mathcal{F}) = r \) \(\implies \) \(X \cong \mathbb{P}^n \)

Proof.
Let \(\mathcal{F} \subsetneq \mathcal{T}_X \) be Fano foliation of rank \(r \geq 2 \) and index \(i(\mathcal{F}) \geq r \)

- Step 1. Show that \(i(\mathcal{F}) = r \)
- Step 2. Show that the leaves of \(\mathcal{F} \) are algebraic
- Step 3. Show that the general log leaf \((F, \Delta) \cong (\mathbb{P}^r, H) \) (log canonical)
- Step 4. Using the common point, show that \(X \cong \mathbb{P}^n \)
Tool: Rational Curves on Uniruled Varieties

X complex projective manifold of dimension n

\mathcal{W} dominating family of rational curves of minimal degree on X ($\mathcal{W} \subset \text{Chow}(X)$)

$x \in X$ general $\rightsquigarrow \mathcal{W}_x = \{ [\ell] \in \mathcal{W} \mid x \in \ell \}$ proper ($d = \dim(\mathcal{W}_x)$)

Properties

- \forall closed subset $Z \subset X$ with $\text{codim}_X(Z) \geq 2$
 $\exists \ \ell \in \mathcal{W}$ such that $\ell \cap Z = \emptyset$

- For general $[\ell] \in \mathcal{W}$, $T_X|_\ell \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^d \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus(n-d-1)}$

 $= \mathcal{T}_{\mathbb{P}^1}$
Tool: Rational Curves on Uniruled Varieties

X complex projective manifold of dimension n

W dominating family of rational curves of minimal degree on X

$(W \subset Chow(X))$

$x \in X$ general $\leadsto W_x = \{[\ell] \in W \mid x \in \ell\}$ proper $\quad (d = \dim(W_x))$

Properties

- \forall closed subset $Z \subset X$ with $\text{codim}_X(Z) \geq 2$
 $\exists \ell \in W$ such that $\ell \cap Z = \emptyset$

- For general $[\ell] \in W$, $T_{X|\ell} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{d} \oplus \mathcal{O}_{\mathbb{P}^1}^{(n-d-1)}$

Theorem (Cho-Miyaoka-Shepherd-Barron, Kebekus 2002)

$d = n - 1 \iff X \cong \mathbb{P}^n \iff \exists x_0 \in X$ such that curves from W_{x_0} dominate X
Rationally connected quotients

X complex projective manifold

W dominating family of rational curves on X

Equivalence relation on X:

$x \sim y \iff x$ and y can be connected by a chain of cycles in \overline{W}

∃ dense open subset $X^\circ \subset X$ and proper morphism

$$\pi : X^\circ \to Y^\circ$$

whose fibers are equivalence classes

For general $[\ell] \in W$:

$$T_{X|\ell} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^d \oplus \mathcal{O}_{\mathbb{P}^1}(n-d-1) \oplus (T_{X^\circ/Y^\circ}|_{\ell})$$
Rationally connected quotients

Remark

\(X \) complex projective manifold

\(W \) proper (unsplit) family of rational curves on \(X \)

(e.g., for some ample divisor \(A \) on \(X \), \(A \cdot \ell = 1 \), \([\ell]\) \(\in \) \(W \))

\[x \sim y \iff x \text{ and } y \text{ can be connected by a chain of cycles in } W \]

\(\exists \) dense open subset \(X^\circ \subset X \) with \(\text{codim}_X(X \setminus X^\circ) \geq 2 \) and equidimensional proper morphism onto normal variety

\[\pi : X^\circ \to Y^\circ \]

whose fibers are equivalence classes, reduced and irreducible
Kobayashi-Ochiai theorem for foliations

Theorem (A.- Druel - Kovács 2008)
$\mathcal{F} \subsetneq T_X$ Fano foliation of rank r on a complex projective manifold X

- $i(\mathcal{F}) \leq r$
- $i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$

Proof.
Let $\mathcal{F} \subsetneq T_X$ be Fano foliation of rank $r \geq 2$ and index $i(\mathcal{F}) \geq r$

- Step 1. Show that $i(\mathcal{F}) = r$
- Step 2. Show that the leaves of \mathcal{F} are algebraic
- Step 3. Show that the general log leaf $(F, \Delta) \cong (\mathbb{P}^r, H)$ (log canonical)
- Step 4. Using the common point, show that $X \cong \mathbb{P}^n$
Step 1. Show that \(i(\mathcal{F}) = r \)

Assumption: \(-K_{\mathcal{F}} = i(\mathcal{F})A\), \(A\) ample and \(i(\mathcal{F}) > r\)

\(\mathcal{W}\) dominating family of rational curves of minimal degree on \(X\) with associated rationally connected quotient \(\pi : X^\circ \to Y^\circ\)

\([\ell] \in \mathcal{W}\) general \(\implies\) \(\ell \cap \text{Sing}(\mathcal{F}) = \emptyset\) and

\[\mathcal{F}_{|_\ell} \subset T_{X_{|_\ell}} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus (n-d-1)}\]

\[\implies\] \[\mathcal{F}_{|_\ell} \cong \underbrace{\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus r-1}}_{\text{and } A \cdot \ell = 1 \ (\mathcal{W} \ \text{unsplit})} \quad \text{and}\]

\[\implies\] \[T_{X^\circ/Y^\circ} \subset \mathcal{F}_{|X^\circ}\]

\[\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \subset (T_{X^\circ/Y^\circ})_{|_\ell} \subset \mathcal{F}_{|_\ell} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus r-1} \subset \]

\[\subset \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus (n-d-1)} \cong T_{X_{|_\ell}}\]
Step 1. Show that $i(\mathcal{F}) = r$

Assumption: $-K_{\mathcal{F}} = i(\mathcal{F})A$, A ample and $i(\mathcal{F}) > r$

\mathcal{W} dominating family of rational curves of minimal degree on X with associated rationally connected quotient $\pi : X^o \to Y^o$

$[\ell] \in \mathcal{W}$ general $\implies \ell \cap \text{Sing}(\mathcal{F}) = \emptyset$ and

$\mathcal{F}|_{\ell} \subset T_{X|\ell} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus (n-d-1)}$

$\implies \mathcal{F}|_{\ell} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus r-1}$ and $A \cdot \ell = 1$ (\mathcal{W} unsplit)

$\implies T_{X^o/Y^o} \subset \mathcal{F}|_{X^o}$

$\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \cong (T_{X^o/Y^o})|_{\ell} = \mathcal{F}|_{\ell} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus r-1} \subset$

$\subset \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus (n-d-1)} \cong T_{X|\ell}$
Step 1. Show that $i(\mathcal{F}) = r$

Assumption: $-K_{\mathcal{F}} = i(\mathcal{F})A$, A ample and $i(\mathcal{F}) > r$

\mathcal{W} dominating family of rational curves of minimal degree on X with associated rationally connected quotient $\pi: X^{\circ} \to Y^{\circ}$

Conclusion: \mathcal{F} is induced by $\pi: X^{\circ} \to Y^{\circ}$

General log leaf $(F, \Delta) = (X_y, 0)$

Corollary (proved in lecture 2)

If \mathcal{F} is an algebraically integrable Fano foliation on a complex projective manifold, then $\Delta \neq 0$.

Contradiction!
Kobayashi-Ochiai theorem for foliations

Theorem (A.- Druel - Kovács 2008)

\[\mathcal{F} \subsetneq T_X \] Fano foliation of rank \(r \) on a complex projective manifold \(X \)

- \(i(\mathcal{F}) \leq r \)
- \(i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n \)

Proof.

Let \(\mathcal{F} \subsetneq T_X \) be Fano foliation of rank \(r \geq 2 \) and index \(i(\mathcal{F}) \geq r \)

- Step 1. Show that \(i(\mathcal{F}) = r \)
- Step 2. Show that the leaves of \(\mathcal{F} \) are algebraic
- Step 3. Show that the general log leaf \((F, \Delta) \cong (\mathbb{P}^r, H)\) (log canonical)
- Step 4. Using the common point, show that \(X \cong \mathbb{P}^n \)
Step 2. Show that leaves are algebraic

Assumption: \(-K_F = rA, \ A \text{ ample}\)

\(\mathcal{W}\) dominating family of rational curves of minimal degree on \(X\)

\(\mathcal{W} \xymatrix{ \ar[r]^-{\alpha} & N_1(X)}\) movable curve class \(\xymatrix{ \ar[r]^-{\mu_\alpha} & \det(\bullet) \cdot \alpha\over \text{rank}(\bullet)}\)

The **Harder-Narasimhan filtration** of \(\mathcal{F}\):

\(0 = \mathcal{F}_0 \subsetneq \mathcal{F}_1 \subsetneq \cdots \subsetneq \mathcal{F}_k = \mathcal{F}\)

\(\mu_\alpha(\mathcal{F}_1) > \mu_\alpha(\mathcal{F}_2) > \cdots > \mu_\alpha(\mathcal{F}_k) \geq 1\)

Theorem (proved in lectures 0 and 1)

\(\mathcal{F}_1\) has algebraic (and RC) leaves

Case 1. \(\mathcal{F} = \mathcal{F}_1\) is \(\mu_\alpha\)-semistable \(\implies\) \(\mathcal{F}\) has algebraic leaves

Case 2. \(\mathcal{F}_1 \neq \mathcal{F}\) \(\implies\) \(\mu_\alpha(\mathcal{F}_1) > 1\)
Step 2. Show that leaves are algebraic

Case 2. $\mathcal{F}_1 \subsetneq \mathcal{F}$ with $\mu_\alpha(\mathcal{F}_1) = \frac{\det(\mathcal{F}_1) \cdot \alpha}{\text{rank}(\mathcal{F}_1)} > 1 \implies$ (as in step 1)

- \mathcal{W} unsplit
- \mathcal{F}_1 has rank $r - 1$
- \mathcal{F}_1 is induced by the rationally connected quotient associated to \mathcal{W}

$$\pi : X^\circ \to Y^\circ$$

(\text{codim}_X(X \setminus X^\circ) \geq 2 \text{ and } \pi \text{ equidimensional and proper with reduced and irreducible fibers onto normal variety})

$$\implies \mathcal{F} = \pi^* \mathcal{G} \text{ for } \mathcal{G} \subset T_{Y^\circ} \text{ foliation of rank } 1$$

$$K_{\mathcal{F}} = K_{X^\circ/Y^\circ} + \pi^* K_{\mathcal{G}}$$
Step 2. Show that leaves are algebraic

$X^\circ \subset X$ open subset with $\text{codim}_X(X \setminus X^\circ) \geq 2$

$\pi : X^\circ \to Y^\circ$ equidimensional and proper with reduced fibers

$G \subset T_{Y^\circ}$ foliation of rank 1

$\mathcal{F} = \pi^* G$ ~ $-K_\mathcal{F} = -K_{X^\circ/Y^\circ} - \pi^* K_G$

$\tilde{C} \subset X$ general complete intersection curve $\implies \tilde{C} \subset X^\circ$

$C = \pi(\tilde{C}) \subset Y^\circ$ (we may assume it is smooth) and $X_C = \pi^{-1}(C)$

$\pi_C : X_C \to C$ equidimensional and proper with reduced fibers

$(-K_\mathcal{F}|_{X_C} = \underbrace{-K_{X_C/C}}_{\text{ample}} - \pi^*(K_G|_C)$

$\implies -K_G \cdot C > 0$

\implies leaves of \mathcal{G} are algebraic
Kobayashi-Ochiai theorem for foliations

Theorem (A.- Druel - Kovács 2008)

\[\mathcal{F} \subsetneq T_X \text{ Fano foliation of rank } r \text{ on a complex projective manifold } X \]

- \(i(\mathcal{F}) \leq r \)
- \(i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n \)

Proof.

Let \(\mathcal{F} \subsetneq T_X \) be Fano foliation of rank \(r \geq 2 \) and index \(i(\mathcal{F}) \geq r \)

- **Step 1.** Show that \(i(\mathcal{F}) = r \)
- **Step 2.** Show that the leaves of \(\mathcal{F} \) are algebraic
- **Step 3.** Show that the general log leaf \((F, \Delta) \cong (\mathbb{P}^r, H) \) (log canonical)
- **Step 4.** Using the common point, show that \(X \cong \mathbb{P}^n \)
Step 3. Show that \((F, \Delta) \cong (\mathbb{P}^r, H)\)

Assumption: \(-K_F = rA\), \(A\) ample + leaves are algebraic

\(\sim (F, \Delta)\) general log leaf \((\Delta \neq 0)\)

Adjunction theory: To describe a polarized variety \((Y, L)\) by studying

\[K_Y + mL, \quad m \geq 1 \quad (\text{adjunction divisors})\]

Example (Fujita 1988)

\[K_Y + \dim(Y)L\] not pseudo-effective \(\implies (Y, L) \cong (\mathbb{P}^n, H)\)

In our case: \((Y, L) = (F, A_F)\)

\[
\begin{align*}
K_F + \Delta &\sim (K_F)_{|F} \sim -rA_F \\
\implies K_F + rA_F &\sim -\Delta \text{ is not pseudo-effective} \\
\implies (F, A_F) &\cong (\mathbb{P}^r, H) \quad \text{and} \quad \Delta \sim H
\end{align*}
\]
Kobayashi-Ochiai theorem for foliations

Theorem (A.-Druel - Kovács 2008)

$\mathcal{F} \subsetneq T_X$ Fano foliation of rank r on a complex projective manifold X

- $i(\mathcal{F}) \leq r$
- $i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$

Proof.

Let $\mathcal{F} \subsetneq T_X$ be Fano foliation of rank $r \geq 2$ and index $i(\mathcal{F}) \geq r$

- Step 1. Show that $i(\mathcal{F}) = r$
- Step 2. Show that the leaves of \mathcal{F} are algebraic
- Step 3. Show that the general log leaf $(F, \Delta) \cong (\mathbb{P}^r, H)$ (log canonical)
- Step 4. Using the common point, show that $X \cong \mathbb{P}^n$
Step 4. Show that $X \cong \mathbb{P}^n$

Assumption: $-K_F = rA$, A ample + leaves are algebraic

General log leaf $(F, \Delta) \cong (\mathbb{P}^r, H)$ and $A_F \sim H$

$\ell \subset F \cong \mathbb{P}^r \leadsto W$ dominating (unsplit) family of rational curves on X

Corollary (proved in lecture 2)

\mathcal{F} algebraically integrable Fano foliation on a complex projective manifold

If the general log leaf (F, Δ) is log canonical, then there is a common point in the closure of a general leaf.

$x_0 \in X$ common point in the closure of a general leaf $F \cong \mathbb{P}^r$

Curves from W_{x_0} dominate $X \quad \implies \quad X \cong \mathbb{P}^n \quad \square$
Theorem (A.-Druel - Kovács 2008)

$\mathcal{F} \subsetneq T_X$ Fano foliation of rank r on a complex projective manifold X

- $i(\mathcal{F}) \leq r$
- $i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$

Definition

A Fano foliation $\mathcal{F} \subsetneq T_X$ of rank r on a complex projective manifold X is a **del Pezzo foliation** if $i(\mathcal{F}) = r - 1$.
del Pezzo foliations

Definition

A Fano foliation $\mathcal{F} \subsetneq T_X$ of rank r on a complex projective manifold X is a del Pezzo foliation if $i(\mathcal{F}) = r - 1$.

Theorem (A.-Druel 2013)

If \mathcal{F} is a del Pezzo foliation on a complex projective manifold X, then

- either $X \cong \mathbb{P}^n$ and $\exists \varphi : \mathbb{P}^n \to \mathbb{P}^{n-r+1}$ such that $\mathcal{F} = \varphi^* \mathcal{C}$ for $\mathcal{C} \cong \mathcal{O} \subset T_{\mathbb{P}^{n-r+1}}$, or

- \mathcal{F} is algebraically integrable

Problem

Classification of del Pezzo foliations
Classification of del Pezzo foliations

Theorem (A.-Druel 2016, A. 2018)

Classification of log leaves \((F, \Delta)\) of del Pezzo foliations on complex projective manifolds:

1. \((F, \Delta) \cong (\mathbb{P}^r, Q^{r-1})\)
2. \((F, \Delta) \cong (Q^r, H)\)
3. \((F, \Delta) \cong (\mathbb{P}^2, \ell)\)
4. \(F \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) + \text{classification of } \mathcal{E} \text{ and description of } \Delta \ (r \leq 3)\)
5. \((F, \Delta) \) is a cone over \((C_d, p_1 + p_2), \) where \(C_d\) is rational normal curve of degree \(d\) in \(\mathbb{P}^d\)
6. \((F, \Delta) \) is a cone over (4)
Classification of del Pezzo foliations

Theorem (A.-Druel 2013, 2016, Figueredo 2019)

\(\mathcal{F} \) del Pezzo foliation of rank \(r \geq 3 \) on complex projective manifold \(X \not\cong \mathbb{P}^n \)

Suppose that the general log leaf \((F, \Delta)\) is log canonical. Then

- either \(X \cong \mathbb{Q}^n \) and \(\mathcal{F} \) is induced by a linear projection \(\mathbb{P}^{n+1} \to \mathbb{P}^{n-r} \)
- or \(r = 3 \) and \(X \cong \mathbb{P}_{\mathbb{P}^k}(\mathcal{E}) \) (+ classification of \(\mathcal{E} \) and \(\mathcal{F} \))

Problem

*Classification of del Pezzo foliations of rank \(r = 2 \)
Thank you!