Complete holomorphic vector fields and their singular points

Adolfo Guillot
UNAM, Mexico
adolfo.guillot@im.unam.mx

Research School “Geometry and Dynamics of Foliations”
CIRM, 2020
Recap

A holomorphic vector field X on a complex manifold induces a holomorphic foliation (away from the zeros of X). X gives each leaf a time form dT — $dT(X) \equiv 1$ — and a translation structure.
Complete and semicomplete vector fields

Complete vector field
Each one-dimensional orbit is of the form \mathbb{C}/G ($G \subset \mathbb{C}$, discrete).

Semicomplete vector field
- For each leaf L there exists $\Omega_L \subset \mathbb{C}$ and a Galois covering map $\phi : \Omega_L \to L$ whose deck transformations are translations.
- For each leaf L, each open path $\gamma : [0,1] \to L$, $\int_\gamma dT_L \neq 0$.
Some facts

- Complete vector fields are semicomplete
- The restriction of a semicomplete vector field is still semicomplete
- It makes sense to speak about germs of semicomplete vector fields
- Germs of semicomplete vector fields give the local models for complete vector fields.
Part III

Non isolated singularities
Vector fields vs. foliations

\[X = f(x, y) \left(A(x, y) \frac{\partial}{\partial x} + B(x, y) \frac{\partial}{\partial y} \right), \quad (A, B) = 1 \]

\(f \) defines a curve of singularities (non-isolated singularities).
Affine structures on curves

Affine group

$$\text{Aff}(\mathbb{C}) = \{ z \mapsto az + b \}$$

Affine structure on a curve L:
- atlas for L with changes of coordinates in $\text{Aff}(\mathbb{C})$;
- cover $\{ U_i \}$, $L = \bigcup U_i$, X_i vector field on U_i without zeros, $X_i = c_{ij} X_j$, c_{ij} constant; or
- a vector field X in \tilde{L} such that deck transformations act by multiplying X by constants.

Example
Translation structures!
Renormalization and the limit affine structure

The asymptotic affine structure

The affine classes of the translation structures on the leafs of

\[X = h(x, y)x^n \frac{\partial}{\partial y} \]

with \(h(0) \neq 0 \), extend to \(x = 0 \) in a unique way.

First integrals of \(X \): \(f(x) \).

If \(X' = f(x)x^n \partial/\partial y \) does not vanish at \(x = 0 \) then \(f = g(x)x^{-n} \)
with \(g(0) \neq 0 \):

\[X'|_{x=0} = g(0) \frac{\partial}{\partial y}. \]

The restrictions of all these vector fields differ by a constant: there is a well-defined affine structure!
Uniformizable affine structures

The affine structure is **uniformizable** if it satisfies one of the following two equivalent properties:

- L is the quotient of $\Omega_L \subset \mathbb{C}$ under a subgroup of $\text{Aff}(\mathbb{C})$.
- for every open path $\gamma : [0, 1] \to L$, the development of the affine structure along γ maps the endpoints to different points.

If the affine structure is the translation structure induced by a vector field, this is the same as semicompleteness.
If X is semicomplete vector field on M, C a component of the curve zeros of X invariant by the foliation, then the affine structure on C is uniformizable.
Examples

1. $x^2 \partial/\partial x + y(nx - (n + 1)y)\partial/\partial y$, $n \in \mathbb{Z}$, $n \geq 0$,
2. $x(x - 2y)\partial/\partial x + y(y - 2x)\partial/\partial y$
3. $x(x - 3y)\partial/\partial x + y(y - 3x)\partial/\partial y$
4. $x(2x - 5y)\partial/\partial x + y(y - 4x)\partial/\partial y$
Uniformizable affine structures (w/singularities on compact curves)

Are:

- Elliptic curves \mathbb{C}/Λ and their quotients,
- \mathbb{CP}^1 and the quotients by $z \mapsto \omega z$, $\omega^n = 1$,
- \mathbb{CP}^1 with the vector field $z \partial / \partial z$, and its quotient under $z \mapsto 1/z$.
- Elliptic curves, quotients of \mathbb{C}^* by groups within \{\(z \mapsto \alpha z\}\}

Adolfo Guillot
Singularities of complete vector fields
May 2020