Codimension one foliation with pseudo-effective conormal bundle (PART 2)

Frédéric Touzet

Université de Rennes 1

May 5, 2020
Recollections (from PART 1)

We are dealing with codimension one distribution \(D \) defined on a
\(n \)-dimensional compact Kähler manifold \(X \) by \(\text{Ker}(\Omega) \),

\[
\Omega \in H^0(X, \Omega^1_X \otimes L^*)
\]

where \(L \in \text{Pic}(X) \) is pseudo-effective (psef).

By Demailly’s integrability criterion, \(D \) is integrable.

One will set \(\mathcal{F} := D \).
We are dealing with codimension one distribution \mathcal{D} defined on a n-dimensional compact Kähler manifold X by $\text{Ker}(\Omega)$,

$$\Omega \in H^0(X, \Omega^1_X \otimes L^*)$$

where $L \in \text{Pic}(X)$ is pseudo-effective (psef).

By Demailly’s integrability criterion, \mathcal{D} is integrable.

One will set $\mathcal{F} := \mathcal{D}$.

Example: $\Omega \in H^0(X, \Omega^1_X \otimes \mathcal{O}(-D))$, D effective. Ω can be viewed as as a holomorphic one form. Here, $L = D$ is psef and can be represented by $[D]$, the integration current of $(n-1, n-1)$ forms on D.

In this case, integrability simply follows from d-closedness of Ω.
Foliations defined by holomorphic one forms

We briefly recall the construction of the Albanese torus, $Alb(X)$ associated to X compact Kähler.
Foliations defined by holomorphic one forms

We briefly recall the construction of the Albanese torus, $Alb(X)$ associated to X compact Kähler.

We have natural maps

$$\Omega^1_X(X) \to H^1(X, \mathbb{C})$$

$$H_1(X, \mathbb{Z})/tor \quad \to \quad \Omega^1_X(X)^*$$

$$\gamma \quad \to \quad \Omega \to \int_\gamma \Omega$$

Set $\Gamma = \text{Im}(H_1(X, \mathbb{Z})/tor) \subset \Omega^1_X(X)^*$. It turns out that Γ is a cocompact lattice in $\Omega^1_X(X)^*$, so that the quotient

$$Alb(X) := \Omega^1_X(X)^*/\Gamma$$

is a compact torus and called the *Albanese torus* of X.
Fixed once for all a point x_0. Integration of forms on paths starting at x_0 and ending at $x \in X$ gives a morphism

$$alb_X : X \rightarrow Alb(X).$$

By construction, $alb_X^* : \Omega^1(Alb(X)) \rightarrow \Omega^1_X(X)$ is an isomorphism. In particular, if $\mathcal{F} = Ker(\Omega)$, $\Omega \in \Omega^1_X(X)$, then $\mathcal{F} = alb_X^*(\mathcal{F}_{lin})$ where \mathcal{F}_{lin} is a linear foliation on the torus, i.e given by translation of a codimension one subgroup.
Fixed once for all a point x_0. Integration of forms on paths starting at x_0 and ending at $x \in X$ gives a morphism

$$alb_X : X \to Alb(X).$$

By construction, $alb_X^* : \Omega^1(Alb(X)) \to \Omega^1_X(X)$ is an isomorphism. In particular, if $\mathcal{F} = \text{Ker}(\Omega)$, $\Omega \in \Omega^1_X(X)$, then $\mathcal{F} = alb_X^*(\mathcal{F}_{\text{lin}})$ where \mathcal{F}_{lin} is a linear foliation on the torus, i.e given by translation of a codimension one subgroup.

⚠️ This codimension one subgroup is not necessarily closed. In particular, \mathcal{F} may have dense leaves.
Fixed once for all a point x_0. Integration of forms on paths starting at x_0 and ending at $x \in X$ gives a morphism

$$alb_X : X \to Alb(X).$$

By construction, $alb^*_X : \Omega^1(Alb(X)) \to \Omega^1_X(X)$ is an isomorphism. In particular, if $\mathcal{F} = \text{Ker}(\Omega)$, $\Omega \in \Omega^1_X(X)$, then $\mathcal{F} = alb^*_X(\mathcal{F}_{\text{lin}})$ where \mathcal{F}_{lin} is a linear foliation on the torus, i.e. given by translation of a codimension one subgroup.

⚠️ This codimension one subgroup is not necessarily closed. In particular, \mathcal{F} may have dense leaves.

We would like now to enumerate some criterias which guarantee that \mathcal{F} is defined by a fibration $X \to C$ over a curve C.

Theorem (Castelnuovo-De Franchis)

Let $\Omega_1, \Omega_2 \in \Omega^1_X(X)$ (compact Kähler), $\Omega_1 \wedge \Omega_2 = 0$. Consider the foliation \mathcal{F} defined by $\text{Ker}(\Omega_1) = \text{Ker}(\Omega_2)$. Then \mathcal{F} is tangent to a fibration $f : X \to C$, where C is a curve of genus $g(C) \geq 2$.
Proof.

By assumptions, there exists a non constant meromorphic function $f : X \dashrightarrow \mathbb{P}^1$ such that $\Omega_1 = f \Omega_2$. The d-closedness of Ω_i then implies that $\Omega_1 \wedge df = \Omega_2 \wedge df = 0$. Moreover, one can easily check that f has no indeterminacy point (i.e is a genuine holomorphic map) and up to taking Stein factorization, one can suppose that $f : X \to C$ has connected fibers. In particular, $\Omega_1, \Omega_2 \in f^*(\Omega^1_C(C))$ and consequently $g(C) \geq 2$. \qed
Proof.

By assumptions, there exists a non constant meromorphic function $f : X \dashrightarrow \mathbb{P}^1$ such that $\Omega_1 = f \Omega_2$. The d-closedness of Ω_i then implies that $\Omega_1 \wedge df = \Omega_2 \wedge df = 0$. Moreover, one can easily check that f has no indeterminacy point (i.e. is a genuine holomorphic map) and up to taking Stein factorization, one can suppose that $f : X \to C$ has connected fibers. In particular, $\Omega_1, \Omega_2 \in f^*(\Omega^1_C(C))$ and consequently $g(C) \geq 2$. \hfill \box

Remark

- **Assumptions of the Theorem** $\Leftrightarrow h^0(N^*F) \geq 2$.
- **If** $\Omega_i \in \Omega^1_X(X), i = 1, 2, 3$ **are three non trivial section of** N^*F **and** f_1, f_2 **are the meromorphic function defined by** $\Omega_i = f_i \Omega_{i+1}, i = 1, 2$ **then** $df_1 \wedge df_2 = 0$, **i.e. the forms** $df_1 \wedge df_2$ **are meromorphically independant or equivalently** $\text{trdeg}_C(\mathbb{C}(f_1, f_2)) \leq 1$.
Proof.

By assumptions, there exists a non constant meromorphic function $f : X \to \mathbb{P}^1$ such that $\Omega_1 = f \Omega_2$. The d-closedness of Ω_i then implies that $\Omega_1 \wedge df = \Omega_2 \wedge df = 0$. Moreover, one can easily check that f has no indeterminacy point (i.e. is a genuine holomorphic map) and up to taking Stein factorization, one can suppose that $f : X \to C$ has connected fibers. In particular, $\Omega_1, \Omega_2 \in f^*(\Omega^1_C(C))$ and consequently $g(C) \geq 2$.

Remark

- **Assumptions of the Theorem** $\iff h^0(N^*_F) \geq 2$.
- If $\Omega_i \in \Omega^1_X(X)$, $i = 1, 2, 3$ are three non trivial section of N^*_F and f_1, f_2 are the meromorphic function defined by $\Omega_i = f_i \Omega_{i+1}, i = 1, 2$ then $df_1 \wedge df_2 = 0$, i.e the forms $df_1 \wedge df_2$ are meromorphically independant or equivalently $\text{trdeg}_\mathbb{C}(\mathbb{C}(f_1, f_2)) \leq 1$.

Actually, one has a more general statement involving **Kodaira dimension**.
Definition
Let $L \in \text{Pic}(X)$ (X compact Kähler). The kodaira dimension of L, denoted by $\kappa(L)$ is defined as follows:
Consider the graded ring

$$R(L) := \bigoplus_{m=0}^{\infty} H^0(X, L^\otimes m)$$

and the homogeneous field of fractions

$$Q(L) = \left\{ \frac{l_i}{l_j} \mid l_i, l_j \in H^0(X, L^\otimes m), m \geq 0 \right\}.$$

One then sets $\kappa(L) = \text{trdeg}_C Q(X, L)$ if there exists $m > 0$ such that $h^0(L^\otimes m) \neq 0$ and $\kappa(L) = -\infty$ otherwise. Note that $\kappa(L) \leq n := \dim(X)$ and that equality holds if L is ample.
Definition
Let $L \in \text{Pic}(X)$ (X compact Kähler). The kodaira dimension of L, denoted by $\kappa(L)$ is defined as follows:
Consider the graded ring

$$R(L) := \bigoplus_{m=0}^{\infty} H^0(X, L^\otimes m)$$

and the homogeneous field of fractions

$$Q(L) = \left\{ \frac{l_i}{l_j} | l_i, l_j \in H^0(X, L^\otimes m), m \geq 0 \right\}.$$

One then sets $\kappa(L) = \text{trdeg}_\mathbb{C} Q(X, L)$ if there exists $m > 0$ such that $h^0(L^\otimes m) \neq 0$ and $\kappa(L) = -\infty$ otherwise. Note that $\kappa(L) \leq n := \dim(X)$ and that equality holds if L is ample.

Theorem (Bogomolov)
Let X be a compact Kähler manifold and a non trivial twisted form $\Omega \in H^0(X, \Omega^1_X \otimes L^*)$, then $\kappa(L) \leq 1$ and when equality holds, $\text{Ker}(\Omega)$ is involutive and tangent to a fibration $X \to \mathbb{C}$.

Sketch of proof.

If $\kappa(N^*_F) \geq 1$, one comes back to the situation depicted in Castelnuovo-De Franchis Theorem, up to taking some ramified cover, . $\kappa(N^*_F) > 1$ does not occur by the second point of the previous remark. □
Abundance defect

Remark
\[\kappa(L) \geq 0 \iff h^0(L^\otimes m) \neq 0 \text{ for some } m \implies L \text{ is psef} \]
It’s then natural to formulate the following
Abundance defect

Remark
\(\kappa(L) \geq 0 \iff h^0(L^\otimes m) \neq 0 \) for some \(m \) \(\implies \) \(L \) is psef

It’s then natural to formulate the following

Question
Does there exists an example of codimension one foliation \(\mathcal{F} \) on \(X \) projective such that \(N^*_\mathcal{F} \) is psef and \(\kappa(N^*_\mathcal{F}) = -\infty \) (non abundance phenomenon)?

Yes!

Consider \(X = D_n/\Gamma \) where \(\Gamma < \text{Aut}_0(D_n) = \text{Aut}(D_n) \) is a torsion free irreducible cocompact lattice. \(X \) is endowed with \(n \) codimension one “tautological” foliations \(F_i \) whose lift on \(D_n \) is defined as the kernel of \(dz_i \), \(i = 1, \ldots, n \). These foliations are minimal (i.e have dense leaves), due to the irreducibility of the lattice.
Abundance defect

Remark
\[\kappa(L) \geq 0 \iff h^0(L^\otimes m) \neq 0 \text{ for some } m \implies L \text{ is psef} \]

It's then natural to formulate the following

Question
Does there exists an example of codimension one foliation \(\mathcal{F} \) on \(X \) projective such that \(N_\mathcal{F}^* \) is psef and \(\kappa(N_\mathcal{F}^*) = -\infty \) (non abundance phenomenon)?

Yes!
Consider \(X = \mathbb{D}^n/\Gamma \) where \(\Gamma < Aut^0(\mathbb{D}^n) = Aut(\mathbb{D})^n \) is a torsion free irreducible cocompact lattice. \(X \) is endowed with \(n \) codimension one "tautological" foliations \(\mathcal{F}_i \) whose lift on \(\mathbb{D}^n \) is defined as the kernel of \(dz_i, i = 1, \ldots, n \). These foliations are minimal (i.e have dense leaves), due to the irreducibility of the lattice.
Take for instance $i = 1$. Remark that \mathcal{F}_1 is also characterized as the kernel of the semi-positive $(1, 1)$ form

$$
\eta = i \frac{dz_1 \wedge d\overline{z}_1}{(1 - |z_1|^2)}
$$

which is nothing than that the area form of the Poincaré metric on the disk \mathbb{D}_{z_1}.

Note that η is well defined on X and induces on $N^*_\mathcal{F}_1$ a metric whose curvature is η itself (up to some positive factor): this is the dual meaning of the constant negative curvature of the Poincaré metric.
Take for instance $i = 1$. Remark that \mathcal{F}_1 is also characterized as the kernel of the semi-positive $(1, 1)$ form

$$\eta = i \frac{dz_1 \wedge d\bar{z}_1}{(1 - |z_1|^2)}$$

which is nothing than that the area form of the Poincaré metric on the disk \mathbb{D}_{z_1}.

Note that η is well defined on X and induces on $N^*_\mathcal{F}_1$ a metric whose curvature is η itself (up to some positive factor): this is the dual meaning of the constant negative curvature of the Poincaré metric.

Reformulation: \mathcal{F}_1 is equipped with a transversely hyperbolic structure: for a sufficiently fine open cover (U_i) of X, \mathcal{F}_i is defined on each U_i by the levels $\{f_i = c\}$, $f_i : U_i \to \mathbb{D}$ subject on overlaps to the glueing conditions $f_i = \alpha_{ij}(f_j)$, $\alpha_{ij} \in Aut(\mathbb{D})$.

Actually, $f_i = z_1 \circ \pi_i^{-1}$ where π_i^{-1} is a local inverse of $\pi : \mathbb{D}^n \to X$.
Let us justify roughly why \(\kappa(N_{\mathcal{F}_1}^*) = -\infty \), assuming for simplicity that \(h^0(N_{\mathcal{F}_1}^*) \neq 0 \). This means that \(\mathcal{F}_1 \) is also defined as the kernel of a holomorphic (hence closed) one form \(\xi \). On \(U_i \), one can write \(\xi = dF_i \).

One can then check, that the collection of Schwarzian derivative \(\{f_i, F_i\} \) of \(f_i \) with respect to \(F_i \) glue together to produce a non constant meromorphic first integral of \(\mathcal{F}_1 \). This contradicts the density of leaves.
Let us justify roughly why $\kappa(N_{\mathcal{F}_1}^*) = -\infty$, assuming for simplicity that $h^0(N_{\mathcal{F}_1}^*) \neq 0$. This means that \mathcal{F}_1 is also defined as the kernel of a holomorphic (hence closed) one form ξ. On U_i, one can write $\xi = dF_i$. One can then check, that the collection of Schwarzian derivative $\{f_i, F_i\}$ of f_i with respect to F_i glue together to produce a non constant meromorphic first integral of \mathcal{F}_1. This contradicts the density of leaves.

Question

Let $\Omega \in H^0(X, \Omega_X^1 \otimes L)$ whith $c_1(L) = 0$ (i.e, L is a flat line bundle). Does this implies that L is torsion ($\iff \kappa(L) = 0$).
Let us justify roughly why $\kappa(N^*_{{\mathcal{F}_1}}) = -\infty$, assuming for simplicity that $h^0(N^*_{{\mathcal{F}_1}}) \neq 0$. This means that \mathcal{F}_1 is also defined as the kernel of a holomorphic (hence closed) one form ξ. On U_i, one can write $\xi = dF_i$. One can then check, that the collection of Schwarzian derivative $\{f_i, F_i\}$ of f_i with respect to F_i glue together to produce a non constant meromorphic first integral of \mathcal{F}_1. This contradicts the density of leaves.

Question

Let $\Omega \in H^0(X, \Omega^1_X \otimes L)$ with $c_1(L) = 0$ (i.e, L is a flat line bundle). Does this implies that L is torsion ($\iff \kappa(L) = 0$).

Obviously, the answer is negative in general e.g $X = C$, where C is a curve of genus ≥ 2.

However, one has the

Theorem (T, 2016)

Let Ω as above (X compact Kähler)

1. Suppose that $\text{codim}\{\Omega = 0\} \geq 2$; then L is torsion

2. If L is not torsion, the foliation \mathcal{F} defined by $\text{Ker}(\Omega)$ is given by a morphism $X \to C$ onto a curve C.
Remark

The first item can be rephrased as $c_1(N^*_F) = 0 \implies N^*_F$ is torsion, where $F = \text{Ker}(\Omega)$ (abundance phenomenon).
Remark

The first item can be rephrased as $c_1(N^*_F) = 0 \implies N^*_F$ is torsion, where $F = \text{Ker} (\Omega)$ (abundance phenomenon)

Question

Is it possible to give a "reasonable" description of codimension one foliation F whose conormal bundle violates the abundance principle:

$$N^*_F \text{ psef and } \kappa (N^*_F) = -\infty$$
Statement of the main Theorem

Theorem
Let \mathcal{F} a codimension one foliation on a projective manifold X whose conormal bundle does not satisfy the abundance principle. Then there exists a morphism

$$
\varphi : X \rightarrow \overline{\mathbb{D}^m/\Gamma}^{BB}
$$

such that $\mathcal{F} = \varphi^* \mathcal{F}_i$ for some $i \in \{1, \ldots, m\}$.

1. Γ is an irreducible lattice of $\text{Aut}(\mathbb{D}^m)$
2. BB denotes the Baily-Borel compactification, which consists here in adding finitely many points (cusps).
3. \mathcal{F}_i is the ith tautological foliation (induced by dz_i).
Statement of the main Theorem

Theorem

Let \mathcal{F} a codimension one foliation on a projective manifold X whose conormal bundle does not satisfy the abundance principle. Then there exists a morphism

$$\varphi : X \to \overline{\mathbb{D}^m} / \Gamma^{BB}$$

such that $\mathcal{F} = \varphi^* \mathcal{F}_i$ for some $i \in \{1, \ldots, m\}$.

One explains the notations:

1. Γ is an irreducible lattice of $\text{Aut}(\mathbb{D})^m$
2. BB denotes the Baily-Borel compactification, which consists here in adding finitely many points (cusps).
3. \mathcal{F}_i is the i^{th} tautological foliation (induced by dz_i).
Comments

- There exists a logarithmic version of this Theorem (natural because it holds on smooth projective models of \mathbb{D}^m/Γ^{BB})

- The projective variety \mathbb{D}^m/Γ^{BB} somehow plays the role of the Albanese torus when $\kappa(N^*_F) \geq 0$
Comments

- There exists a logarithmic version of this Theorem (natural because it holds on smooth projective models of \mathbb{D}^m/Γ^{BB})
- The projective variety \mathbb{D}^m/Γ^{BB} somehow plays the role of the Albanese torus when $\kappa(N^*_F) \geq 0$

We indicate briefly the ingredients of the Proof (details will be given in the last lecture)

1. One construct a hyperbolic transverse invariant metric with respect to \mathcal{F} well defined on $X - H$ where H is a certain hypersurface \mathcal{F}-invariant. This produces a morphism $\pi_1(X - H) \rightarrow Aut(\mathbb{D})$, namely the monodromy representation attached to this hyperbolic transverse structure.

2. To conclude, one exploits fundamental results by Corlette and Simpson about rank 2 representations of quasi-projective groups.